The structure of thianthrene. By Irving Rowe and Benjamin Post, Polytechnic Institute of Brooklyn, Brooklyn 1, N. Y., U.S. A.

(Received 25 June 1956)

The molecular structure of thianthrene

has been determined. The unit cell is monoclinic with

$$
\begin{gathered}
a=11 \cdot 97, b=6 \cdot 14, c=14.53 \AA \text { (all } \pm 0 \cdot 3 \%), \\
\beta=110 \cdot 0 \pm 0 \cdot 5^{\circ} .
\end{gathered}
$$

The space group is $P 2_{1} / c$ and the unit cell contains four molecules.

The approximate structure was determined from Patterson sections and electron-density projections computed on X-RAC. At this stage of the structure determination, agreement between calculated and 'observed' structure factors was poor; for the 1700 independent reflections R was 45%. The large value of R reflected primarily uncertainties in the locations of carbon atoms which were not clearly resolved in the projections. Refinement of the structure by least-squares, using the IBM 704 computer, was therefore undertaken. The value of
R dropped rapidly, in a few cycles of refinement, from 45% to $17 \cdot 5 \%$. Final refinements are still in progress to determine the extent to which variations of individual C-C bond lengths from the mean value ($1.393 \AA$) are real, but some interesting features of the structure have been established with some certainty. The molecule is folded about the $S-S$ axis; the dihedral angle is $127.5 \pm 0.5^{\circ}$. The C-S-C angle is $99.7 \pm 0.5^{\circ}$. The mean C-S bond length is $1.77 \AA$, indicating about 25% doublebond character. In the least-squares refinement, separate temperature factors were computed for each atom; the temperature factors of the carbon atoms furthest removed from the sulfur atoms were significantly greater than those computed for carbon atoms nearest the sulfur atoms.

A detailed discussion of the structure will be published shortly.

The authors wish to thank Dr R. Pepinsky and his staff for their helpful assistance with X-RAC calculations; they also thank Dr David Sayre of the International Business Machines World Headquarters for helpful discussions and assistance with the least-squares calculation.

Acta Cryst. (1956). 9, 827

The structures of $\mathbf{C s}_{\mathbf{2}} \mathbf{T h C l} \mathbf{C l}_{\mathbf{6}}$ and $\mathbf{C s}_{\mathbf{2}} \mathbf{U} \mathbf{C l}_{\mathbf{6}} \boldsymbol{*}$. By Stanley Siegel, Chemistry Division, Argonne National Laboratory, Lemont, Illinois, U.S.A.

(Received 18 July 1956)

$\mathrm{Cs}_{2} \mathrm{UCl}_{6}$ and one form of $\mathrm{Cs}_{2} \mathrm{ThCl}_{6}$ are isostructural with $\mathrm{Cs}_{2} \mathrm{PuCl}_{5}$ (Zachariasen, 1948). The symmetry is trigonal and the assigned space group is $D_{3 d}^{3}-C \overline{3} m$. Cell dimensions are given in Table 1. The observed density leads to one

Table 1. Cell dimensions

	$\mathrm{Cs}_{2} \mathrm{ThCl}_{6}$	$\mathrm{Cs}_{2} \mathrm{UCl}_{6}$
a (kX.)	7.614 ± 0.007	7.492 ± 0.003
c (kX.)	6.038 ± 0.007	6.038 ± 0.003

molecule per cell, with atoms in the following positions:
1 Th or U in $(0,0,0)$,
2 Cs in $\pm\left(\frac{1}{3}, \frac{2}{3}, u\right)$,
6 Cl in $\pm(x, \bar{x}, z) ; \pm(2 \bar{x}, \bar{x}, z) ; \pm(x, 2 x, z)$.
The coordinates, which have been deduced from the intensities of powder patterns, are shown in Table 2. These values lead to structures in which each heavy atom is bonded to 6 chlorines at the corners of slightly distorted octahedra, with $\mathrm{Th}-6 \mathrm{Cl}=2.81 \AA(2.80 \AA)$ and

[^0]Table 2. Coordinates for chlorine and cesium

	$\mathrm{Cs}_{2} \mathrm{ThCl}_{6}$	$\mathrm{Cs}_{2} \mathrm{UCl}_{6}$
	0.178 ± 0.007	0.179 ± 0.009
x	0.256 ± 0.006	0.24 ± 0.01
z	0.750 ± 0.006	0.743 ± 0.006

$\mathrm{U}-6 \mathrm{Cl}=2.75 \AA(2.74 \AA)$. Values given in parentheses correspond to ionic radii sums for sixfold coordination, using recent values for the Th^{+4} and U^{+4} radii (Seaborg \& Katz, 1954). For the thorium salt, each cesium is bonded to 12 chlorines, with 3 chlorines at distances of $3 \cdot 63 \AA, 3$ at $3 \cdot 69 \AA$, and 6 at $3 \cdot 82 \AA$, giving a weighted average of $3 \cdot 74 \AA$. For $\mathrm{Cs}_{2} \mathrm{UCl}_{6}$, the twelvefold distribution is similar with 3 chlorines at $3 \cdot 62 \AA, 3$ at $3 \cdot 64 \AA$, and 6 at $3.76 \AA$, giving a weighted average of $3.70 \AA$. The average values may be compared with the ionic radii sum of $3.67 \AA$ for exact twelvefold coordination in the $\mathrm{Cs}^{+}-12 \mathrm{Cl}^{-}$bond.

References

Zachariasen, W. H. (1948). Acta Cryst. 1, 268.
Seaborg, G. T. \& Katz, J. J. (1954). The Actinide Elements, IV-14A, chap. 18, p. 769. New York: McGrawHill.

[^0]: * Based on work performed under the auspices of the U.S. Atomic Energy Commission.

